Respuesta :
Answer:
[tex](0,-3)[/tex]
[tex](5,0)[/tex]
[tex](10,3)[/tex]
[tex](20,9)[/tex]
Step-by-step explanation:
Given
[tex]3x - 5y = 15[/tex]
Required
Form 4 pairs of (x,y) values
This question will be answered based on assumptions of x and y values;
Haven said that:
For point 1
Take x = 0
Substitute 0 for x in [tex]3x - 5y = 15[/tex]
[tex]3(0) -5y = 15[/tex]
[tex]-5y = 15[/tex]
Solve for y
[tex]y = 15/-5[/tex]
[tex]y = -3[/tex]
So; the first pair is:
[tex](0,-3)[/tex]
For point 2:
Take y = 0
Substitute 0 for y in [tex]3x - 5y = 15[/tex]
[tex]3x - 5(0) = 15[/tex]
[tex]3x = 15[/tex]
Solve for x
[tex]x = 15/3[/tex]
[tex]x = 5[/tex]
So, the pair is
[tex](5,0)[/tex]
For point 3:
Take x = 10
Substitute 10 for x in [tex]3x - 5y = 15[/tex]
[tex]3(10) - 5y = 15[/tex]
[tex]30 - 5y = 15[/tex]
Collect Like Terms
[tex]-5y = 15 - 30[/tex]
[tex]-5y = -15[/tex]
Solve for y
[tex]y = -15/-5[/tex]
[tex]y = 3[/tex]
So, the pair is:
[tex](10,3)[/tex]
For point 4:
Take y = 9
Substitute 9 for y in [tex]3x - 5y = 15[/tex]
[tex]3x - 5(9) = 15[/tex]
[tex]3x - 45 = 15[/tex]
Collect Like Terms
[tex]3x = 45 + 15[/tex]
[tex]3x = 60[/tex]
Solve for x
[tex]x = 60/3[/tex]
[tex]x = 20[/tex]
So, the pair is:
[tex](20,9)[/tex]
Answer:
the guy above me his answer is correct
Step-by-step explanation:
i got a A on my TGA