3x - 5y = 15.
(a) Create a table of values for at least 4 points. Show your work on how you found the values for each
coordinate pair, and validated the points were on the line.
Work for Point 1
Work for Point 2
Work for Point 3
Work for Point 4

Respuesta :

Answer:

[tex](0,-3)[/tex]

[tex](5,0)[/tex]

[tex](10,3)[/tex]

[tex](20,9)[/tex]

Step-by-step explanation:

Given

[tex]3x - 5y = 15[/tex]

Required

Form 4 pairs of (x,y) values

This question will be answered based on assumptions of x and y values;

Haven said that:

For point 1

Take x = 0

Substitute 0 for x in [tex]3x - 5y = 15[/tex]

[tex]3(0) -5y = 15[/tex]

[tex]-5y = 15[/tex]

Solve for y

[tex]y = 15/-5[/tex]

[tex]y = -3[/tex]

So; the first pair is:

[tex](0,-3)[/tex]

For point 2:

Take y = 0

Substitute 0 for y in [tex]3x - 5y = 15[/tex]

[tex]3x - 5(0) = 15[/tex]

[tex]3x = 15[/tex]

Solve for x

[tex]x = 15/3[/tex]

[tex]x = 5[/tex]

So, the pair is

[tex](5,0)[/tex]

For point 3:

Take x = 10

Substitute 10 for x in [tex]3x - 5y = 15[/tex]

[tex]3(10) - 5y = 15[/tex]

[tex]30 - 5y = 15[/tex]

Collect Like Terms

[tex]-5y = 15 - 30[/tex]

[tex]-5y = -15[/tex]

Solve for y

[tex]y = -15/-5[/tex]

[tex]y = 3[/tex]

So, the pair is:

[tex](10,3)[/tex]

For point 4:

Take y = 9

Substitute 9 for y in [tex]3x - 5y = 15[/tex]

[tex]3x - 5(9) = 15[/tex]

[tex]3x - 45 = 15[/tex]

Collect Like Terms

[tex]3x = 45 + 15[/tex]

[tex]3x = 60[/tex]

Solve for x

[tex]x = 60/3[/tex]

[tex]x = 20[/tex]

So, the pair is:

[tex](20,9)[/tex]

Answer:

the guy above me his answer is correct

Step-by-step explanation:

i got a A on my TGA