Respuesta :

Answer:

[tex]h(g(x))=x^2+x-2[/tex]

[tex]h(g(f(x))= x^2-19x+88[/tex]

Step-by-step explanation:

Composite Function

Suppose f(x) and g(x) are real functions, the composite function named [tex](f\circ g)(x)[/tex] is defined as:

[tex](f\circ g)(x)=f(g(x))[/tex]

The composite function can be found by substituting g into f.

We are given these functions:

[tex]f(x)=9-x[/tex]

[tex]g(x)=x^2+x[/tex]

[tex]h(x)=x-2[/tex]

Find:

a) h(g(x))

Substituting g into h:

[tex]h(g(x))=x^2+x-2[/tex]

b) h(g(f(x))

First we find g(f(x)):

[tex]g(f(x))=(9-x)^2+(9-x)[/tex]

Operating:

[tex]g(f(x))=81-18x+x^2+9-x[/tex]

Simplifying:

[tex]g(f(x))=90-19x+x^2[/tex]

Now find h(g(f(x)) replacing the above equation into h:

[tex]h(g(f(x))= 90-19x+x^2-2[/tex]

Simplifying and rearranging:

[tex]h(g(f(x))= 88-19x+x^2[/tex]

[tex]h(g(f(x))= x^2-19x+88[/tex]