Answer:
D.
(0,5) and (-4,2)
E.
(-4,4) and (-1,7)
Step-by-step explanation:
To solve this problem, we apply the slope formula and compare with the known slope to see if the answer tallies;
Slope = [tex]\frac{y_{2} - y_{1} }{x_{2} - x_{1} }[/tex]
A.
(0,5) and (-4,8)
x₁ = 0 y₁ = 5
x₂ = -4 y₂ = 8
Slope = [tex]\frac{8-5}{-4-0}[/tex] = [tex]-\frac{3}{4}[/tex]
B.
(6,-1) and (10,2)
x₁ = 6 y₁ = -1
x₂ = 10 y₂ = 2
Slope = [tex]\frac{10-6}{ 2-(-1)}[/tex] = [tex]\frac{4}{3}[/tex]
C.
(1,5) and (4,7)
x₁ = 1 y₁ = 5
x₂ = 4 y₂ = 7
Slope = [tex]\frac{7-5}{4-1}[/tex] = [tex]\frac{2}{3}[/tex]
D.
(0,5) and (-4,2)
x₁ = 0 y₁ = 5
x₂ = -4 y₂ = 2
Slope = (2-5) / (-4-0) = 3/4
E.
(-4,4) and (-1,7)
x₁ = -4 y₁ = 4
x₂ = -1 y₂ = 7
Slope = [tex]\frac{7-4}{-1-(-4)}[/tex] = [tex]\frac{3}{4}[/tex]