Calculate the area of triangle ABC with altitude, CD, given
A(-6,-4), B(6,5), C(-1,6), and D(2, 2).
Round your answer to the nearest tenth if necessary.
The area of triangle ABC is
square units

Calculate the area of triangle ABC with altitude CD given A64 B65 C16 and D2 2 Round your answer to the nearest tenth if necessary The area of triangle ABC is s class=

Respuesta :

Answer:

37.5 square units

Step-by-step explanation:

Given:

A(-6,-4), B(6,5), C(-1,6), and D(2, 2), where CD is the altitude if ∆ABC

Required:

Area of ∆ABC

SOLUTION:

Area of a ∆ABC =½*AB*CD

✍️[tex] AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{6 -(-6))^2 + (5 -(-4))^2 [/tex]

[tex] AB = \sqrt{12^2 + 9^2} [/tex]

[tex] AB = \sqrt{144 + 81} [/tex]

[tex] AB = \sqrt{225} = 15 [/tex]

✍️[tex] CD = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{2 -(-1))^2 + (2 - 6)^2 [/tex]

[tex] CD = \sqrt{(3)^2 + (-4)^2} [/tex]

[tex] CD = \sqrt{9 + 16} [/tex]

[tex] CD = \sqrt{25} = 5 [/tex]

✍️Area of a ∆ABC =½*AB*CD

= ½*15*5

✅ Area = 37.5 square units