Respuesta :

Answer:

[tex]Probability = \frac{1}{20}[/tex]

Step-by-step explanation:

Given

[tex]People = 6[/tex]

[tex]Selection = 3[/tex]

Required

Determine the probability of selecting the oldest 3

First, we need to determine the total possible selection.

Since it's a selection, we make use of combination as follows:

[tex]^nC_r = \frac{n!}{(n-r)!r!}[/tex]

In this case:

[tex]n = 6[/tex]

[tex]r = 3[/tex]

So:

[tex]^nC_r = \frac{n!}{(n-r)!r!}[/tex]

[tex]^6C_3 = \frac{6!}{(6-3)!3!}[/tex]

[tex]^6C_3 = \frac{6!}{3!3!}[/tex]

[tex]^6C_3 = \frac{6*5*4*3!}{3!3*2*1}[/tex]

[tex]^6C_3 = \frac{6*5*4}{3*2*1}[/tex]

[tex]^6C_3 = \frac{5*4}{1}[/tex]

[tex]^6C_3 = 20[/tex]

In the combination, there can be only 1 set of oldest people.

So:

[tex]Probability = \frac{1}{20}[/tex]