Respuesta :

Answer:

6.746 ft/s^2

Explanation:

v(t)=50

v(0)=27

t=5/3600 = 1/720 hours

v(t)-v(0)= a(t-0)

50-27= a(1/720)

a= 23*720= 16560 mi/h^2

16560mi/h^2 * 5280/3600^2 (ft/s^2) =6.746 ft/s^2

The acceleration required to increase the speed of a car from 27 mi/h to 50 mi/h in 5 seconds is 6.75 ft/s².

Acceleration is given by:

[tex] a =  \frac{\Delta v}{\Delta t} = \frac{v_{f} - v_{i}}{t_{f} - t_{i}} [/tex]

Where:

[tex] v_{f} [/tex]: is the final speed of the car = 50 mi/h

[tex] v_{i}[/tex]: is the initial speed of the car = 27 mi/h

[tex] \Delta t[/tex]: is the change in time = 5 seconds

The constant acceleration required is:

[tex] a = \frac{v_{f} - v_{i}}{\Delta t} [/tex]

[tex] a = \frac{50 \frac{mi}{h}*\frac{1 h}{3600 s}*\frac{5280 ft}{1 mi} - 27 \frac{mi}{h}*\frac{1 h}{3600 s}*\frac{5280 ft}{1 mi}}{5 s} [/tex]

[tex] a = 6.75 ft/s^{2} [/tex]  

Therefore, the constant acceleration required is 6.75 ft/s².

Find more here:

https://brainly.com/question/12134554?referrer=searchResults

I hope it helps you!

Ver imagen whitneytr12