Respuesta :

Given:

In triangle ABC, D is incenter m∠ACB = 3x + 54 and m∠ACD = x + 31.

To find:

m∠ACD.

Solution:

We know that,

Incenter of a triangle is the intersection point of all angle bisectors.

[tex]\angle ACD=\angle BCD[/tex]      ...(i)

Now,

[tex]\angle ACB=\angle ACD+\angle BCD[/tex]

[tex]\angle ACB=\angle ACD+\angle ACD[/tex]       [Using (i)]

[tex]\angle ACB=2\angle ACD[/tex]

Substitute the values, we get

[tex]3x+54=2(x+31)[/tex]

[tex]3x+54=2x+62[/tex]

[tex]3x-2x=62-54[/tex]

[tex]x=8[/tex]

The value of x is 8.

[tex]m\angle ACD=x+31[/tex]

[tex]m\angle ACD=8+31[/tex]

[tex]m\angle ACD=39[/tex]

Therefore, the measure of angle ACD is 39 degrees.

Ver imagen erinna