Respuesta :

Answer: A

Step-by-step explanation:

3x² - 10x + 5 = 0

a = 3      b = -10     c = 5

Δ = b²- 4ac = 100 - 4.3.5 = 40 > 0 => have 2 solutions

=> x = [tex]\frac{10+\sqrt{40} }{6}[/tex] or x = [tex]\frac{10-\sqrt{40} }{6}[/tex]

[tex]x= \frac{10\pm \sqrt{40} }{6}[/tex] is the solution to the given quadratic equation.

What is quadratic equation?

Quadratic equations are the polynomial equations of degree 2 in one variable of type f(x) = [tex]ax^{2} +bx+c[/tex] = 0 where a, b, c, ∈ R and a ≠ 0. It is the general form of a quadratic equation where 'a' is called the leading coefficient and 'c' is called the absolute term of f (x).

Quadratic formula = [tex]\frac{-b\pm \sqrt{b^{2} -4ac} }{2a}[/tex]

Given quadratic equation

[tex]3x^{2} -10x+5=0[/tex]

a = 3, b = -10, c = 5

Quadratic formula = [tex]\frac{-b\pm \sqrt{b^{2} -4ac} }{2a}[/tex]

[tex]x= \frac{-(-10)\pm \sqrt{(-10)^{2} -4(3)(5)} }{2\times3}[/tex]

⇒ [tex]x= \frac{10\pm \sqrt{100 -60} }{6}[/tex]

⇒ [tex]x= \frac{10\pm \sqrt{40} }{6}[/tex]

Hence,  [tex]x= \frac{10\pm \sqrt{40} }{6}[/tex] is the solution to the given quadratic equation.

Find out more information about quadratic equation here

https://brainly.com/question/2559836

#SPJ3