Respuesta :
Answer:
here you go!
Step-by-step explanation:
Working with the left hand side
( 1 + cos x ) + ( 1 − cos x ) ( 1 − cos x ) ( 1 + cos x 1 + cos x + 1 − cos x 1 − cos 2 x 2 sin 2 x 2 csc 2 x
which is equal to the right hand side
By using trigonometric identities both the questions are proved LHS = RHS. 1. csc2(x) - 2csc(x)cot(x) + cot2(x) = tan2 (x/2). 2. [cos (x) cos(y)] [tan tan (x) + tan(y)] = sin(x + y).
What are trigonometric identities?
Trigonometric identities are the functions that include trigonometric functions such as sine, cosine, tangents, secant, and, cot.
1. csc2(x) - 2csc(x)cot(x) + cot2(x) = tan2 (x/2)
Proof; LHS
[tex]csc^2(x) - 2csc(x)cot(x) + cot^2(x)\\\\(cscx - cot x)^2\\\\(\dfrac{1}{sin x} - \dfrac{cosx}{sin x} )^2\\\\\\(\dfrac{1-cosx}{sin x})^2\\ \\(tan)^2\dfrac{x}{2}\\[/tex]
Thus, LHS = RHS
2. [cos cos (x) cos(y)] [tan tan (x) + tan tan(y)] = sin(x + y)
Proof; LHS
[tex][cos (x) cos(y)] [tan (x) + tan(y)]\\\\ (cos (x) cos(y)) (\dfrac{sinx}{cos x} + \dfrac{siny}{cos y} )\\\\sin x \; cos y +sin y\; cos x\\\\sin (x+ y)[/tex]
Thus, LHS = RHS
Learn more about trigonometric;
https://brainly.com/question/21286835
#SPJ2