Respuesta :

Answer:

f−1(x)=√x−3,−√x−3

Find the inverse function f(x)=x^2-3.

Replace f(x) with y.

y = x²-3

Swap the variables.

x = y²-3

Solve for y.

Rewrite the equation as y² - 3x = x.

Add 3 to both sides of the equation.

y² = x - 3

Take the square root on both sides of the equation to eliminate the exponent on the left side.

[tex]\bf{y=\pm\sqrt{x+3} }[/tex]

The complete solution is the result of the positive or negative portions of the solution.

First, use the positive value of ± to find the first solution.

[tex]\bf{y=\sqrt{x+3} }[/tex]

Then use the negative value of ± to find the second solution.

[tex]\bf{y=-\sqrt{x+3} }[/tex]

The complete solution is the result of the positive or negative portions of the solution.

[tex]\bf{y=\sqrt{x+3} }[/tex]

[tex]\bf{y=-\sqrt{x+3} }[/tex]

Solve for y and substitute with [tex]\bf{f^{-1}(x) }[/tex].

substitute f⁻¹( x ) for y to show the final answer.

[tex]\boldsymbol{f^{-1}(x)=\sqrt{x+3},-\sqrt{x+3} }[/tex]

Set the composite results function.

[tex]\boldsymbol{g(f(x)) }[/tex]

Evaluate g(f(x)) by substituting the value of f into g.

[tex]\boldsymbol{\sqrt{(x^{2} -3)+3 } }[/tex]

Add −3 and 3.

[tex]\boldsymbol{g(x^{2} -3)=\sqrt{x^{2} +0} }[/tex]

Add and 0.

[tex]\boldsymbol{g(x^{2} -3)=\sqrt{x^{2}} }[/tex]

Extract terms from under the radical, assuming positive real numbers.

[tex]\boldsymbol{g(x^{2} -3)=x }[/tex]

Given the [tex]\bf{g(f(x))=x,f^{-1}(x)=\sqrt{x+3},-\sqrt{x+3} }[/tex]  is the inverse of [tex]\bf{f(x)=x^{2} -3. }[/tex]

[tex]\boldsymbol{f^{-1}(x)=\sqrt{x+3},-\sqrt{x+3}. }[/tex]