Respuesta :

Given:

Two complex numbers are [tex]w_1=-2+3i[/tex] and [tex]w_2=4-4i[/tex].

To find:

The complex number that can be added to [tex]w_1[/tex] to produce [tex]w_2[/tex].

Solution:

Let complex number [tex]z=[/tex] is added to [tex]w_1[/tex] to produce [tex]w_2[/tex].

[tex]w_1+z=w_2[/tex]

[tex]z=w_2-w_1[/tex]

On substituting the values, we get

[tex]z=(4-4i)-(-2+3i)[/tex]

[tex]z=4-4i+2-3i[/tex]

Combine like real and imaginary parts.

[tex]z=(4+2)+(-4-3)i[/tex]

[tex]z=6+(-7)i[/tex]

[tex]z=6-7i[/tex]

Therefore, the correct option is C.