Using the 3 functions below, make the desired transformation(s) to the correct function and describe the transformation(s). Write the new equation k(x).

If the functions are: f(x)=2x+1 g(x)=−12x−3 h(x)=−2
then find k(x) if k(x)=g(x)−3
Transformation(s) of g(x) to k(x):

-3:




New equation:

k(x)=

Using the 3 functions below make the desired transformations to the correct function and describe the transformations Write the new equation kx If the functions class=

Respuesta :

Answer:

The transformation of [tex]g(x)[/tex] to [tex]k(x)[/tex] consists in a vertical translation. The new equation is [tex]k(x) = -12\cdot x-6[/tex].

Step-by-step explanation:

Let [tex]g(x) = -12\cdot x - 3[/tex]. We proceed to make the required transformations on [tex]g(x)[/tex], which consists in one vertical translation, 3 units in the -y direction. That is to say:

[tex]k(x) = g(x) - 3[/tex] (1)

[tex]k(x) = (-12\cdot x - 3) - 3[/tex]

[tex]k(x) = -12\cdot x-6[/tex]

Then, the transformation of [tex]g(x)[/tex] to [tex]k(x)[/tex] consists in a vertical translation. The new equation is [tex]k(x) = -12\cdot x-6[/tex].