1. Two triangles have the following congruence statement: ACGI = AMPR Name all 6 pairs of corresponding congruent parts. 1.

Answer:
[tex] \angle C \cong \angle M [/tex]
[tex] \angle G \cong \angle P [/tex]
[tex] \angle I \cong \angle R [/tex]
[tex] \overline{CG} \cong \overline{MP} [/tex]
[tex] \overline{GI} \cong \overline{PR} [/tex]
[tex] \overline{CI} \cong \overline{MR} [/tex]
Step-by-step explanation:
Given the congruence statement ∆CGI [tex] \cong [/tex] ∆MPR, it follows that the corresponding sides of both ∆s are equal, as well as the corresponding vertices or angles. It implies that ∆CGI and ∆MPR are of the same shape and size.
✅Thus, the 6 pairs of the corresponding congruent parts of ∆CGI and ∆MPR are:
[tex] \angle C \cong \angle M [/tex]
[tex] \angle G \cong \angle P [/tex]
[tex] \angle I \cong \angle R [/tex]
[tex] \overline{CG} \cong \overline{MP} [/tex]
[tex] \overline{GI} \cong \overline{PR} [/tex]
[tex] \overline{CI} \cong \overline{MR} [/tex]