Answer:
[tex]\approx[/tex] -2.195
Step-by-step explanation:
Given the function:
[tex]d(t)= 12 (.72) ^ t[/tex]
[tex]d[/tex] is the depth of water in feet and
[tex]t[/tex] is the amount of time
To find:
The average rate of change for [tex]t[/tex] in the interval [0, 4].
Solution:
The required rate of change in the time interval [0, 4] can be represented as:
Change in the function over the interval [0, 4] and the change in the interval.
OR
[tex]\Rightarrow \dfrac{d(4)-d(0)}{4-0}\\\Rightarrow \dfrac{12 (.72) ^ 4-12 (.72) ^ 0}{4-0}\\\Rightarrow \dfrac{3.22-12 \times 1}{4}\\\Rightarrow \dfrac{3.22-12}{4}\\\Rightarrow \dfrac{-8.78}{4}\\\Rightarrow \bold{-2.195}[/tex]