Respuesta :

Answer:

Step-by-step explanation:

If a point (x, y) lies on a straight line, coordinates of the point will satisfy the equation.

Slope of a line passing through two points C(4, 5) and D(8, 10),

m = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

m = [tex]\frac{10-5}{8-4}[/tex]

m = [tex]\frac{5}{4}[/tex]

Equation of the line passing through C(4, 5) and slope m = [tex]\frac{5}{4}[/tex]

y - y' = m(x - x')

y - 5 = [tex]\frac{5}{4}(x-4)[/tex]

y = [tex]\frac{5}{4}x-5+5[/tex]

y = [tex]\frac{5}{4}x[/tex]

If point B(4, 0) lies on the line CD,

0 = [tex]\frac{5}{4}(4)[/tex]

0 = 5

Which is not true.

Therefore, point B doesn't lie on line CD.