Initial velocity of projection (u) = 20 m/s
Angle of projection (θ) = 30°
Formula of Horizontal Range of Projectile:
[tex] \boxed{ \bf{R = \dfrac{2u^2 sin\theta .cos \theta}{g}}}[/tex]
By substituting values in the formula, we get:
[tex] \rm \longrightarrow R = \dfrac{2 \times 20^2 \times sin30 \degree \times cos 30 \degree}{10} \\ \\ \rm \longrightarrow R = \dfrac{ \cancel{2} \times 40 \cancel{0} \times \dfrac{ \sqrt{3} }{ 2} \times \dfrac{1}{\cancel{2}} }{ \cancel{10}} \\ \\ \rm \longrightarrow R =40 \times \dfrac{ \sqrt{3} }{ 2} \\ \\ \rm \longrightarrow R =20 \sqrt{3} \: m \\ \\ \rm \longrightarrow R =34.641 \: m[/tex]
[tex] \therefore [/tex] Horizontal Range of Projectile (R) = 34.641 m