Using a maximum allowable shear stress of 70 MPa, find the shaft diameter needed to transmit 40 kW when (a) The shaft speed is 2500 rev/min. (b) The shaft speed is 250 rev/min

Respuesta :

Answer:

a

 [tex]d = 0.0223 \ m[/tex]

b

[tex]d = 0.0481 \ m[/tex]  

Explanation:

From the question we are told that

   The maximum allowable shear stress is  [tex]\sigma = 70 MPa = 70 *10^{6} \ Pa[/tex]

    The power is  [tex]P = 40 \ kW = 40 *10^{3} \ W[/tex]

considering question a

   The shaft speed is given as [tex]v = 2500\ rev/min[/tex]

Generally the torque experienced by the shaft is mathematically represented as

       [tex]\tau = \frac{ 9.55 * P}{v}[/tex]

=>    [tex]\tau = \frac{ 9.55 * 40 *10^{3}}{ 2500}[/tex]

=>    [tex]\tau = 152.8 \ N \cdot m[/tex]

Generally the maximum torque experienced by the shaft is mathematically represented as

          [tex]\tau_m = \frac{2 \tau }{ \pi r^2 }[/tex]

Generally diameter  =  2 *  radius (r)

So

        [tex]\tau_m = \frac{2 \tau }{ \pi 4 d^2 }[/tex]

Generally the maximum allowable shear stress is mathematically represented as

                [tex]\sigma = \frac{2 \tau }{ \pi 4 d^2 } * \frac{32}{d}[/tex]

=>             [tex]\sigma = \frac{16 \tau }{ \pi d^3}[/tex]

=>            [tex]d = \sqrt[3]{\frac{16 * \tau }{ \pi \sigma } }[/tex]

=>          [tex]d = \sqrt[3]{\frac{16 * 152.8 }{ \pi * 70 *10^{6} } }[/tex]

=>          [tex]d = 0.0223 \ m[/tex]

considering question b

   The shaft speed is given as [tex]v = 250\ rev/min[/tex]

Generally the torque experienced by the shaft is mathematically represented as

       [tex]\tau = \frac{ 9.55 * 40 *10^{3}}{250 }[/tex]

=>    [tex]\tau = 1528 \ N \cdot m[/tex]

Generally the shaft diameter is mathematically represented as

   [tex]d = \sqrt[3]{\frac{16 * \tau }{ \pi \sigma } }[/tex]

=>[tex]d = \sqrt[3]{\frac{16 * 1528 }{ 3.142 * 70 *10^{6} } }[/tex]  

=>[tex]d = 0.0481 \ m[/tex]