Given P(A)=0.78P(A)=0.78, P(B)=0.65P(B)=0.65 and P(A\cup B)=0.873P(A∪B)=0.873, find the value of P(A\cap B)P(A∩B), rounding to the nearest thousandth, if necessary

Respuesta :

Answer:

[tex]P(A\ n\ B) = 0.557[/tex]

Step-by-step explanation:

Given

[tex]P(A) = 0.78[/tex]

[tex]P(B) = 0.65[/tex]

[tex]P(A\ u\ B) = 0.873[/tex]

Required

Determine [tex]P(A\ n\ B)[/tex]

From laws of probability, we have:

[tex]P(A\ n\ B) = P(A) + P(B) - P(A\ u\ B)[/tex]

Substitute in values

[tex]P(A\ n\ B) = 0.78 + 0.65 - 0.873[/tex]

[tex]P(A\ n\ B) = 0.557[/tex]

Hence, [tex]P(A\ n\ B)[/tex] is calculated to be 0.557