Answer:
[tex]P(A\ n\ B) = 0.557[/tex]
Step-by-step explanation:
Given
[tex]P(A) = 0.78[/tex]
[tex]P(B) = 0.65[/tex]
[tex]P(A\ u\ B) = 0.873[/tex]
Required
Determine [tex]P(A\ n\ B)[/tex]
From laws of probability, we have:
[tex]P(A\ n\ B) = P(A) + P(B) - P(A\ u\ B)[/tex]
Substitute in values
[tex]P(A\ n\ B) = 0.78 + 0.65 - 0.873[/tex]
[tex]P(A\ n\ B) = 0.557[/tex]
Hence, [tex]P(A\ n\ B)[/tex] is calculated to be 0.557