A 12-year, 5% coupon bond pays interest annually. The bond has a face value of $1,000. Blank 1. Fill in the blank, read surrounding text. -12.38 % is the percentage change in the price of this bond if the yield to maturity rises to 6% from the current yield to maturity of 4.5%?

Respuesta :

Answer:

The answer is "12.38 %".

Explanation:

Please find the complete question in the attached file.

Price of face [tex]= \$ \ 1,000[/tex]

Yearly Coupon Rate [tex]= 5 \%[/tex]

Yearly Coupon [tex]= \$ \ 1,000 \times 5 \%[/tex]

                          [tex]= \$ \ 50[/tex]                    

Maturity time [tex]= 12 \ years[/tex]

Bond yield [tex]= 4.5 \%[/tex]

Price [tex]= \$ \ 50 \times PVIFA(4.50 \%, 12) + \$ \ 1,000 \times PVIF(4.50 \%, 12)[/tex]

         [tex]= \$ \ 50 \times \frac{(1-( \frac{1}{1.045})^{12})}{0.045} + \frac{1,000}{1.045^{12}}\\\\= \$ \ 1,045.59[/tex]

Returns shift to [tex]6 \%[/tex]

Price [tex]= \$ 50 \times PVIFA(6 \%, 12) + \$ 1,000 \times PVIF(6 \%, 12)[/tex]

         [tex]= \$ 50 \times \frac{(1-(\frac{1}{1.06})^{12})}{0.06} + \frac{1,000}{1.06^{12}}\\\\= \$ \ 916.16[/tex]

Shift in prices:

[tex]= \frac{(\$ \ 916.16 - \$ \ 1,045.59)}{\$ \ 1,045.59} \\\\ = -12.38 \%[/tex]OR [tex]=12.38 \%[/tex]

Ver imagen codiepienagoya