Answer:
The answer is "12.38 %".
Explanation:
Please find the complete question in the attached file.
Price of face [tex]= \$ \ 1,000[/tex]
Yearly Coupon Rate [tex]= 5 \%[/tex]
Yearly Coupon [tex]= \$ \ 1,000 \times 5 \%[/tex]
[tex]= \$ \ 50[/tex]
Maturity time [tex]= 12 \ years[/tex]
Bond yield [tex]= 4.5 \%[/tex]
Price [tex]= \$ \ 50 \times PVIFA(4.50 \%, 12) + \$ \ 1,000 \times PVIF(4.50 \%, 12)[/tex]
[tex]= \$ \ 50 \times \frac{(1-( \frac{1}{1.045})^{12})}{0.045} + \frac{1,000}{1.045^{12}}\\\\= \$ \ 1,045.59[/tex]
Returns shift to [tex]6 \%[/tex]
Price [tex]= \$ 50 \times PVIFA(6 \%, 12) + \$ 1,000 \times PVIF(6 \%, 12)[/tex]
[tex]= \$ 50 \times \frac{(1-(\frac{1}{1.06})^{12})}{0.06} + \frac{1,000}{1.06^{12}}\\\\= \$ \ 916.16[/tex]
Shift in prices:
[tex]= \frac{(\$ \ 916.16 - \$ \ 1,045.59)}{\$ \ 1,045.59} \\\\ = -12.38 \%[/tex]OR [tex]=12.38 \%[/tex]