Respuesta :
Answer:
1) v = 0.45 m/s
2) v = 0.65 m/s
3) v = 0.75 m/s
Explanation:
1) We can find the speed of the object by conservation of energy:
[tex] E_{i} = E_{f} [/tex]
[tex] \frac{1}{2}kx^{2} = \frac{1}{2}kx^{2} + \frac{1}{2}mv^{2} [/tex]
Where:
k: is the spring constant = 280 N/m
v: is the speed of the object =?
m: is the mass of the object = 5.00 kg
x: is the displacement of the spring
[tex] \frac{1}{2}280N/m(0.10 m)^{2} = \frac{1}{2}280N/m(0.08 m)^{2} + \frac{1}{2}5.00 kgv^{2} [/tex]
[tex] v = \sqrt{\frac{280N/m(0.10 m)^{2} - 280N/m(0.08 m)^{2}}{5.00 kg}} = 0.45 m/s [/tex]
2) When the object is 5.00 cm (0.050 m) from equilibrium, the speed of the object is:
[tex] \frac{1}{2}kx^{2} = \frac{1}{2}kx^{2} + \frac{1}{2}mv^{2} [/tex]
[tex] \frac{1}{2}280N/m(0.10 m)^{2} = \frac{1}{2}280N/m(0.05 m)^{2} + \frac{1}{2}5.00 kgv^{2} [/tex]
[tex] v = \sqrt{\frac{280N/m(0.10 m)^{2} - 280N/m(0.05 m)^{2}}{5.00 kg}} = 0.65 m/s [/tex]
3) When the object is at the equilibrium position, the speed of the object is:
[tex] \frac{1}{2}kx^{2} = \frac{1}{2}kx^{2} + \frac{1}{2}mv^{2} [/tex]
[tex] \frac{1}{2}280N/m(0.10 m)^{2} = \frac{1}{2}280N/m(0 m)^{2} + \frac{1}{2}5.00 kgv^{2} [/tex]
[tex] v = \sqrt{\frac{280N/m(0.10 m)^{2}}{5.00 kg}} = 0.75 m/s [/tex]
I hope it helps you!
(1) the speed of the object when compression of the spring is 8 cm is 0.449 m/s
(2) the speed of the object when compression of the spring is 5 cm is 0.648 m/s
(3) the speed of the object when the spring is at equilibrium is 0.748 m/s
Compression of spring and conservation of energy:
Given that the mass of the object, m = 5 kg
spring constant, k = 280 N/m
compression of the spring , x = 10 cm = 0.1m
(i) the spring compression is at d = 8cm
according to the conservation of energy:
[tex]\frac{1}{2}kx^2=\frac{1}{2}kd^2+\frac{1}{2}mv^2[/tex]
where v is the speed at the given compression of the spring.
[tex]\frac{1}{2}\times280\times(0.1)^2=\frac{1}{2}\times280\times(0.08)^2+\frac{1}{2}\times5\times v^2\\\\v^2=0.2016[/tex]
v = 0.449 m/s
(ii) the spring compression is at d = 5cm
according to the conservation of energy:
[tex]\frac{1}{2}kx^2=\frac{1}{2}kd^2+\frac{1}{2}mv^2[/tex]
where v is the speed at the given compression of the spring.
[tex]\frac{1}{2}\times280\times(0.1)^2=\frac{1}{2}\times280\times(0.05)^2+\frac{1}{2}\times5\times v^2\\\\v^2=0.42[/tex]
v = 0.648 m/s
(iii) the spring is at equilibrium so compression is at d = 0cm
according to the conservation of energy:
[tex]\frac{1}{2}kx^2=\frac{1}{2}kd^2+\frac{1}{2}mv^2[/tex]
where v is the speed at the given compression of the spring.
[tex]\frac{1}{2}\times280\times(0.1)^2=\frac{1}{2}\times280\times(0)^2+\frac{1}{2}\times5\times v^2\\\\v^2=0.56[/tex]
v = 0.748 m/s
Learn more about conservation of energy:
https://brainly.com/question/14245799?referrer=searchResults