Respuesta :
Note: Consider the base of all is 3 instead of comma.
Given:
Consider the given value is [tex]\log_37=1.77[/tex].
To find:
The value of [tex]\log_363[/tex].
Solution:
Using properties of logarithm, we get
[tex]\log_363=\log_3(9\times 7)[/tex]
[tex]\log_363=\log_3(3^2\times 7)[/tex]
[tex]\log_363=\log_3(3^2)+\log_3(7)[/tex] [tex][\because \log ab=\log a+\log b][/tex]
[tex]\log_363=2+ \log_3(7)[/tex] [tex][\because \log_aa^x=x][/tex]
[tex]\log_363=2+1.77[/tex] [tex][\because \log_37=1.77][/tex]
[tex]\log_363=3.77[/tex]
Therefore, the value of [tex]\log_363[/tex] is 3.77.
Applying logarithm properties, it is found that:
[tex]\log_3{63} = 3.77[/tex]
We want to find [tex]\log_3{63}[/tex], considering that [tex]63 = 7 \times 9 = 7 \times 3^2[/tex], we have that:
[tex]\log_3{63} = \log_3{(7 \times 3^2)}[/tex]
The first property applied is:
[tex]\log{a \times b} = \log{a} + \log{b}[/tex]
Hence:
[tex]\log_3{63} = \log_3{(7 \times 3^2)} = \log_3{7} + \log_3{3^2}[/tex]
The next property is:
[tex]\log_a{a^b} = b[/tex]
Hence:
[tex]\log_3{7} + \log_3{3^2} = 1.77 + 2 = 3.77[/tex]
A similar problem is given at https://brainly.com/question/2620660