6. When rounded to the nearest hundredth, log, 7 =1.77. Which of the following represents the value of
log, 63 to the nearest hundredth? Hint: write 63 as a product involving 7.

Respuesta :

Note: Consider the base of all is 3 instead of comma.

Given:

Consider the given value is [tex]\log_37=1.77[/tex].

To find:

The value of [tex]\log_363[/tex].

Solution:

Using properties of logarithm, we get

[tex]\log_363=\log_3(9\times 7)[/tex]

[tex]\log_363=\log_3(3^2\times 7)[/tex]

[tex]\log_363=\log_3(3^2)+\log_3(7)[/tex]       [tex][\because \log ab=\log a+\log b][/tex]

[tex]\log_363=2+ \log_3(7)[/tex]    [tex][\because \log_aa^x=x][/tex]

[tex]\log_363=2+1.77[/tex]        [tex][\because \log_37=1.77][/tex]

[tex]\log_363=3.77[/tex]

Therefore, the value of [tex]\log_363[/tex] is 3.77.

Applying logarithm properties, it is found that:

[tex]\log_3{63} = 3.77[/tex]

We want to find [tex]\log_3{63}[/tex], considering that [tex]63 = 7 \times 9 = 7 \times 3^2[/tex], we have that:

[tex]\log_3{63} = \log_3{(7 \times 3^2)}[/tex]

The first property applied is:

[tex]\log{a \times b} = \log{a} + \log{b}[/tex]

Hence:

[tex]\log_3{63} = \log_3{(7 \times 3^2)} = \log_3{7} + \log_3{3^2}[/tex]

The next property is:

[tex]\log_a{a^b} = b[/tex]

Hence:

[tex]\log_3{7} + \log_3{3^2} = 1.77 + 2 = 3.77[/tex]

A similar problem is given at https://brainly.com/question/2620660