Respuesta :

Space

Answer:

[tex]\displaystyle f'(1) = 6[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle f(x) = 5x - 1 + \ln x[/tex]

Step 2: Differentiate

  1. [Function] Derivative Property [Addition/Subtraction]:                               [tex]\displaystyle f'(x) = \frac{d}{dx}[5x] - \frac{d}{dx}[1] + \frac{d}{dx}[\ln x][/tex]
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   [tex]\displaystyle f'(x) = 5 \frac{d}{dx}[x] - \frac{d}{dx}[1] + \frac{d}{dx}[\ln x][/tex]
  3. Derivative Rule [Basic Power Rule]:                                                             [tex]\displaystyle f'(x) = 5 - 0 + \frac{d}{dx}[\ln x][/tex]
  4. Logarithmic Differentiation:                                                                         [tex]\displaystyle f'(x) = 5 + \frac{1}{x}[/tex]
  5. Substitute in x:                                                                                               [tex]\displaystyle f'(1) = 5 + \frac{1}{1}[/tex]
  6. Simplify:                                                                                                         [tex]\displaystyle f'(1) = 6[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation