Respuesta :

Given:

The explicit formula of a sequence is

[tex]f(n)=-9.2-2.5(n-1)[/tex]

To find:

The third, fifth, and seventeenth terms of the sequence.

Solution:

We have,

[tex]f(n)=-9.2-2.5(n-1)[/tex]

For n=3,

[tex]f(3)=-9.2-2.5(3-1)[/tex]

[tex]f(3)=-9.2-2.5(2)[/tex]

[tex]f(3)=-9.2-5[/tex]

[tex]f(3)=-14.2[/tex]

For n=5,

[tex]f(5)=-9.2-2.5(5-1)[/tex]

[tex]f(5)=-9.2-2.5(4)[/tex]

[tex]f(5)=-9.2-10[/tex]

[tex]f(5)=-19.2[/tex]

For n=7,

[tex]f(7)=-9.2-2.5(7-1)[/tex]

[tex]f(7)=-9.2-2.5(6)[/tex]

[tex]f(7)=-9.2-15[/tex]

[tex]f(7)=-24.2[/tex]

Therefore, the third, fifth, and seventeenth terms of the sequence are -14.2, -19.2 and -24.2 respectively.