Given:
The explicit formula of a sequence is
[tex]f(n)=-9.2-2.5(n-1)[/tex]
To find:
The third, fifth, and seventeenth terms of the sequence.
Solution:
We have,
[tex]f(n)=-9.2-2.5(n-1)[/tex]
For n=3,
[tex]f(3)=-9.2-2.5(3-1)[/tex]
[tex]f(3)=-9.2-2.5(2)[/tex]
[tex]f(3)=-9.2-5[/tex]
[tex]f(3)=-14.2[/tex]
For n=5,
[tex]f(5)=-9.2-2.5(5-1)[/tex]
[tex]f(5)=-9.2-2.5(4)[/tex]
[tex]f(5)=-9.2-10[/tex]
[tex]f(5)=-19.2[/tex]
For n=7,
[tex]f(7)=-9.2-2.5(7-1)[/tex]
[tex]f(7)=-9.2-2.5(6)[/tex]
[tex]f(7)=-9.2-15[/tex]
[tex]f(7)=-24.2[/tex]
Therefore, the third, fifth, and seventeenth terms of the sequence are -14.2, -19.2 and -24.2 respectively.