Respuesta :

Answer:

[tex]\sqrt{(-3^2-6)+(7^2-4^2)}[/tex]

Step-by-step explanation:

Use the form: [tex]\sqrt{(x^2-x^1)+(y2-y1)^2[/tex]

so: [tex]\sqrt{(-3^2-6)+(7^2-4^2)}[/tex]

By the distance formula,

[tex]d = \sqrt{( x_2 - x_1) {}^{2} + (y_2 - y_1 {)}^{2} }[/tex]

Here,

[tex]x_1 = 4[/tex]

[tex]y_1 = 6[/tex]

[tex]x_2 = 7[/tex]

[tex]y_2 = - 3[/tex]

Hence,

[tex]d = \sqrt{( {7 - 4)}^{2} + {( - 3 - 6)}^{2} } [/tex]

[tex]d = \sqrt{ {3}^{2} + ( - {9)}^{2} } [/tex]

[tex]d = \sqrt{9 + 81} [/tex]

[tex]d = \sqrt{90} [/tex]