Respuesta :

Answer:

If the sinø=7/12, cosø is [tex]\frac{\sqrt{95} }{12}[/tex]

Step-by-step explanation:

We are given sinФ = 7/12

We need to find cosФ

The basic trigonometric functions of right triangle are:

[tex]sin\theta=\frac{opposite}{hypotenuse}[/tex]

[tex]cos\theta=\frac{adjacent}{hypotenuse}[/tex]

We need values of adjacent and hypotenuse to find cosФ

Using Pythagoras theorem we can find the value of adjacent

[tex](Hypotenuse)^2= (Opposite)^2+(Adjacent)^2[/tex]

We have Hypotenuse= 12 and Opposite = 7 (because [tex]sin\theta=\frac{opposite}{hypotenuse}[/tex] and we are given [tex]sin\theta=\frac{7}{12}[/tex]

Inserting values and finding adjacent:

[tex](Hypotenuse)^2= (Opposite)^2+(Adjacent)^2\\(12)^2=(7)^2+(Adjacent)^2\\144=49+(Adjacent)^2\\144-49=(Adjacent)^2\\95=(Adjacent)^2\\\sqrt{(Adjacent)^2} =\sqrt{95}\\Adjacent=\sqrt{95}[/tex]

So, value of Adjacent is [tex]\sqrt{95}[/tex]

Now finding cosФ

[tex]cos\theta=\frac{adjacent}{hypotenuse}[/tex]

Adjacent = [tex]\sqrt{95}[/tex], hypotenuse = 12

[tex]cos\theta=\frac{\sqrt{95} }{12}[/tex]

So, If the sinø=7/12, cosø is [tex]\frac{\sqrt{95} }{12}[/tex]