Respuesta :

Answer:

[tex]y=\frac{5}{6}x-2[/tex]

Step-by-step explanation:

Let the equation of a line passing through a point [tex](x_1,y_1)[/tex] and slope [tex]m_1[/tex] is,

[tex]y-y_1=m_1(x-x_1)[/tex]

Equation of the second line has been given as,

6x + 5y = 10

Slope-intercept form of the equation will be,

5y = -6x + 10

y = [tex]-\frac{6}{5}x+10[/tex]

Here slope of the line [tex]m_2=-\frac{6}{5}[/tex]

If both the lines are perpendicular,

By the property of perpendicular lines,

[tex]m_1\times m_2=-1[/tex]

[tex]m_1\times (-\frac{6}{5})=-1[/tex]

[tex]m_1=\frac{5}{6}[/tex]

Therefore, equation of the line passing through (6, 3) and slope = [tex]\frac{5}{6}[/tex] will be,

y - 3 = [tex]\frac{5}{6}(x-6)[/tex]

y = [tex]\frac{5}{6}x-5+3[/tex]

[tex]y=\frac{5}{6}x-2[/tex]