Answer:
8.9 m/[tex]s^{2}[/tex]
Explanation:
From Newton's law of universal gravitation,
F = [tex]\frac{GMm}{R^{2} }[/tex] .............. 1
and from Newton's second law of motion,
F = mg ........... 2
Equating the two expression,
mg = [tex]\frac{GMm}{R^{2} }[/tex]
g = [tex]\frac{GM}{R^{2} }[/tex]
Given that: mass of Venus = 4.87 x [tex]10^{24}[/tex] Kg, radius = 6.05 x [tex]10^{6}[/tex] and G = 6.67 x [tex]10^{-11}[/tex] N[tex]m^{2} Kg^{-2}[/tex]
Thus;
g = [tex]\frac{6.67*10^{-11}*4.87*10^{24} }{(6.05*10^{6} )^{2} }[/tex]
= [tex]\frac{3.24829*10^{14} }{3.66025*10^{13} }[/tex]
= 8.87450
g = 8.9 m/[tex]s^{2}[/tex]
the acceleration of gravity on the surface of Venus is 8.9 m/[tex]s^{2}[/tex].