Answer:
Diameter of the piston would be 0.71 m (71.1 cm)
Explanation:
From the principle of pressure;
[tex]\frac{F_{1} }{A_{1} }[/tex] = [tex]\frac{F_{2} }{A_{2} }[/tex]
Let [tex]F_{1}[/tex] = 2903.57 lb, [tex]F_{2}[/tex] = 24.41 lbs, [tex]r_{2}[/tex] = 3.26 cm = 0.0326 m.
[tex]A_{2}[/tex] = [tex]\pi r^{2}[/tex]
= [tex]\frac{22}{7}[/tex] x [tex](0.0326)^{2}[/tex]
= 0.00334 [tex]m^{2}[/tex]
So that:
[tex]\frac{2903.57}{A_{1} }[/tex] = [tex]\frac{24.41}{0.00334}[/tex]
[tex]A_{1}[/tex] = [tex]\frac{2903.57*0.00334}{24.41}[/tex]
= 0.3973
[tex]A_{1}[/tex] = 0.4 [tex]m^{2}[/tex]
The radius of the piston can be determined by:
[tex]A_{1}[/tex] = [tex]\pi r^{2}[/tex]
0.3973 = [tex]\frac{22}{7}[/tex] x [tex]r^{2}[/tex]
[tex]r^{2}[/tex] = [tex]\frac{0.3973*7}{22}[/tex]
= 0.1264
r = [tex]\sqrt{0.1264}[/tex]
= 0.3555
r = 0.36 m
Diameter of the piston = 2 x r
= 2 x 0.3555
= 0.711
Diameter of the piston would be 0.71 m (71.1 cm).