The function h is a quadratic function whose graph is a translation 3 units left and 4 units up of the parent
function f(x)=x. What is the equation of h in vertex form and in the form y = ax? +bx+c?

A. y=(x-3)^2 +4; x^2 -6x+9
B. y=(x-3)^2 +4; y=x^2 -6x +13
C. y=(x+3)^2 +4; y=x^2 +6x+9
D. y=(x+3)^2; y=x^2 +6x+13

Respuesta :

Answer:

D ( if you add +4 to the (x + 3)^2)

Step-by-step explanation:

Parent function is f(x) = x^2

A translation 3 units left gives y = )x + 3)^2

- and 4 up gives y = (x + 3)^2 + 4 - vertex form.

Standard form :

y = x^2 + 6x + 9 + 4

= x^2 + 6x + 13.