Given the following functions, find and simplify (f • g)(x) f(x)=—x+3 g(x)=-x-1

Answer:
[tex](f\circ g)(x)= x + 4[/tex]
Step-by-step explanation:
Composite Function
Given f(x) and g(x) as real functions, the composite function [tex](f\circ g)(x)[/tex] is defined as:
[tex](f\circ g)(x)=f(g(x))[/tex]
It can be found by substituting g into f.
We are given the functions:
f(x) = -x + 3
g(x) = -x -1
Find
[tex](f\circ g)(x)=f(g(x))= - (-x -1) + 3[/tex]
Removing parentheses:
[tex](f\circ g)(x)= x + 1 + 3[/tex]
Simplifying:
[tex]\mathbf{(f\circ g)(x)= x + 4}[/tex]