Jayden and Sheridan both tried to find the missing side of the right triangle. A right triangle is shown. One leg is labeled as 7 centimeters. The hypotenuse is labeled as 13 centimeters.Jayden's WorkSheridan's Worka2 + b2 = c2a2 + b2 = c272 + 132 = c272 + b2 = 13249 + 169 = c249 + b2 = 169218 = c2b2 = 120Square root 218 equals square root c squared.Square root b squared equals square root 120.14.76 ≈ cb ≈ 10.95Is either of them correct? Explain your reasoning

Respuesta :

Answer:

Sheridan's Work is correct

Step-by-step explanation:

we know that

The lengths side of a right triangle must satisfy the Pythagoras Theorem

[tex]c^{2}=a^{2}+b^{2}[/tex]

where

a and b are the legs

c is the hypotenuse (the greater side)

In this problem

Let

[tex]a=7\ cm\\c=13\ cm[/tex]

substitute

[tex]13^{2}=7^{2}+b^{2}[/tex]

Solve for b

[tex]169=49+b^{2}[/tex]

[tex]b^{2}=169-49[/tex]

[tex]b^{2}=120[/tex]

[tex]b=\sqrt{120}\ cm[/tex]

[tex]b=10.95\ cm[/tex]

we have that

Jayden's Work

[tex]a^{2}+b^{2}=c^{2}[/tex]

[tex]a=7\ cm\\b=13\ cm[/tex]

substitute and solve for c

[tex]7^{2}+13^{2}=c^{2}[/tex]

[tex]49+169=c^{2}[/tex]

[tex]218=c^{2}[/tex]

[tex]c=\sqrt{218}\ cm[/tex]

[tex]c=14.76\ cm[/tex]

Jayden's Work is incorrect, because the missing side is not the hypotenuse of the right triangle

Sheridan's Work

[tex]a^{2}+b^{2}=c^{2}[/tex]

[tex]a=7\ cm\\c=13\ cm[/tex]

substitute

[tex]7^{2}+b^{2}=13^{2}[/tex]

Solve for b

[tex]49+b^{2}=169[/tex]

[tex]b^{2}=169-49[/tex]

[tex]b^{2}=120[/tex]

[tex]b=\sqrt{120}\ cm[/tex]

[tex]b=10.95\ cm[/tex]

therefore

Sheridan's Work is correct