Respuesta :

Since it is positive power, the answer is -1 so it is B.

Answer:

B) - 1.

Step-by-step explanation:

Given  : [tex]i^{58}[/tex].

To find : Solve it.

Solution : We have given   [tex]i^{58}[/tex].

We know that even power of imaginary number is -1 .

[tex]i^{2}[/tex] = -1.

So, [tex](i^{2})^{2}= 1[/tex].

[tex](i^{4})= 1[/tex].

We can write  [tex]i^{58}[/tex] as  [tex](i^{4})^{14}[/tex].

Then  [tex]i^{58}[/tex]= [tex](i^{4})^{14}[/tex] *  [tex]i^{2}[/tex].

Plug  [tex](i^{4})= 1[/tex] and  [tex]i^{2}[/tex] = -1.

[tex]i^{58}[/tex]=  [tex](1^{14})[/tex] *  [tex]i^{2}[/tex]

  [tex]i^{58}[/tex] = 1 *-1.

[tex]i^{58}[/tex] = -1.

Therefore, B) - 1.