Respuesta :
paraalell has same slope
for
ax+by=c
an equatio with same slope is
ax+by=z where a and b remain unchanged and z is a constant
so
4x+3y=12
paralell is
4x+3y=z
find waht z is
(-3,2)
(x,y)
inpus -3 for x and 2 for y
4(-3)+3(2)=z
-12+6=z
-6=z
the equation is
4x+3y=-6
or
y=-4/3x-2
for
ax+by=c
an equatio with same slope is
ax+by=z where a and b remain unchanged and z is a constant
so
4x+3y=12
paralell is
4x+3y=z
find waht z is
(-3,2)
(x,y)
inpus -3 for x and 2 for y
4(-3)+3(2)=z
-12+6=z
-6=z
the equation is
4x+3y=-6
or
y=-4/3x-2
REwriting the first equation in the form y=mx+c
3y=-4x+12
y=[tex] \frac{-4x}{3} +4[/tex]
Gradient m= -4/3
Since parallel lines have equal gradients, then equation of line 2:
[tex] \frac{y-2}{x-(-3)} = \frac{-4}{3} [/tex]
y-2=[tex] \frac{-4}{3} (x+3)[/tex]
y-2=[tex] \frac{-4}{3} x-4[/tex]
y=[tex] \frac{-4}{3} x-2[/tex]
3y=-4x+12
y=[tex] \frac{-4x}{3} +4[/tex]
Gradient m= -4/3
Since parallel lines have equal gradients, then equation of line 2:
[tex] \frac{y-2}{x-(-3)} = \frac{-4}{3} [/tex]
y-2=[tex] \frac{-4}{3} (x+3)[/tex]
y-2=[tex] \frac{-4}{3} x-4[/tex]
y=[tex] \frac{-4}{3} x-2[/tex]