Respuesta :
We have: 2mn^2 √5mn^2, where √ is a cubed root.
Hence, we can do (2mn^2)^3 to get 8m^3n^6. Now we'll take that into the root:
√5mn^2*8m^3n^6 = √120m^4n^8
So, √120m^4n^8 simplifies into 2mn^2 √5mn^2.
Hence, we can do (2mn^2)^3 to get 8m^3n^6. Now we'll take that into the root:
√5mn^2*8m^3n^6 = √120m^4n^8
So, √120m^4n^8 simplifies into 2mn^2 √5mn^2.
Answer:
[tex]2\sqrt[3]{5}m^{2}n^{4}[/tex]
Step-by-step explanation:
[tex]2mn^2\times\sqrt[3]{5}mn^2[/tex]
Let us bring the term of same type together we get
[tex]2\times\sqrt[3]{5}\times mn^2 \times mn^2[/tex]
[tex]2\sqrt[3]{5}\times mn^2\times mn^2[/tex]
[tex]2\sqrt[3]{5}\times m\times m\times n^2\times n^2[/tex]
Now here we apply the rule of exponents , which is like this
m^p\times m^q=m^{p+q}
Hence
[tex]2\sqrt[3]{5}\times m^{1+1}\times n^{2+2}[/tex]
[tex]2\sqrt[3]{5}\times m^{2}\times n^{4}[/tex]
[tex]2\sqrt[3]{5}m^{2}n^{4}[/tex]
Hence this is our answer.