Respuesta :

Answer:

x = 30° ; y = 45°

Step-by-step explanation:

Angle subtended by the diameter on any point of the circle is 90°. So,angleRSP = 90°

angleRST = 120° (given)

But,

angleRST = angleRSP + anglePST

[tex] = > 90 + x = 120[/tex]

[tex] = > x = 120 - 90 = 30[/tex]

In triangle PQR , PQ = RQ (given)

Hence , it is an isosceles triangle. As it is an isosceles triangle , the base angles are equal.

=> anglePRQ = angleRPQ = y°

anglePQR = 90° (Angle subtended by diameter on any point of circle is 90°)

According to Angle Sum Property of Triangle,

anglePRQ + angleRPQ = anglePQR

[tex] = > 90 + y + y = 180[/tex]

[tex] = > 2y = 180 - 90 = 90[/tex]

[tex] = > y = \frac{90}{2} = 45[/tex]