Respuesta :

Answer:

[tex]\boxed {\boxed {\sf 136}}[/tex]

Step-by-step explanation:

The quadratic formula helps us find the roots of a quadratic equation. The equation is:

[tex]\begin{array}{*{20}c} {x = \frac{{ - b \pm \sqrt {b^2 - 4ac} }}{{2a}}} } \\ \end{array}[/tex]

where [tex]ax^2+bx+c=0[/tex]

The discriminant is just the part under the square root. This helps tell us if there are two, one, or zero real solutions.

The discriminant is:

[tex]b^2-4ac[/tex]

We are given the quadratic: [tex]9x^2-8x-2=0[/tex]

Therefore, a is 9, b is -8, and c is -2.

[tex]a=9 \\ b= -8 \\c= -2\\[/tex]

[tex](-8)^2-[4(9)(-2)][/tex]

Solve the exponent.

  • (-8)²= -8*-8=64

[tex]64-[4(9)(-2)][/tex]

Multiply 4, 9, and -2.

  • 4*9*-2= 36*-2=-72

[tex]64-(-72) = 64+72 \\=136[/tex]

The discriminant is 136. Since it is a non-zero, positive number, this quadratic has 2 real solutions/zeroes/roots.

Otras preguntas