Answer:
[tex]T_1 = 8[/tex]
[tex]T_2 = 14[/tex]
[tex]T_3 = 22[/tex]
Step-by-step explanation:
Given
[tex]T_n = n^2 + 3n + 4[/tex]
Required:
Find the first 3 terms
To do this, we take the values of n to be 1,2 and 3.
For the first term; n = 1
[tex]T_n = n^2 + 3n + 4[/tex]
[tex]T_1 = 1^2 + 3*1 + 4[/tex]
[tex]T_1 = 1+ 3+ 4[/tex]
[tex]T_1 = 8[/tex]
For the second term; n = 2
[tex]T_n = n^2 + 3n + 4[/tex]
[tex]T_2 = 2^2 + 3 * 2 + 4[/tex]
[tex]T_2 = 4 + 6+ 4[/tex]
[tex]T_2 = 14[/tex]
For the third term; n = 3
[tex]T_n = n^2 + 3n + 4[/tex]
[tex]T_3 = 3^2 + 3 * 3 + 4[/tex]
[tex]T_3 = 9 + 9 + 4[/tex]
[tex]T_3 = 22[/tex]