Respuesta :

Answer:

[tex]T_1 = 8[/tex]

[tex]T_2 = 14[/tex]

[tex]T_3 = 22[/tex]

Step-by-step explanation:

Given

[tex]T_n = n^2 + 3n + 4[/tex]

Required:

Find the first 3 terms

To do this, we take the values of n to be 1,2 and 3.

For the first term; n = 1

[tex]T_n = n^2 + 3n + 4[/tex]

[tex]T_1 = 1^2 + 3*1 + 4[/tex]

[tex]T_1 = 1+ 3+ 4[/tex]

[tex]T_1 = 8[/tex]

For the second term; n = 2

[tex]T_n = n^2 + 3n + 4[/tex]

[tex]T_2 = 2^2 + 3 * 2 + 4[/tex]

[tex]T_2 = 4 + 6+ 4[/tex]

[tex]T_2 = 14[/tex]

For the third term; n = 3

[tex]T_n = n^2 + 3n + 4[/tex]

[tex]T_3 = 3^2 + 3 * 3 + 4[/tex]

[tex]T_3 = 9 + 9 + 4[/tex]

[tex]T_3 = 22[/tex]