At a distance of 5.0 m from a point sound source, the sound intensity level is 110 dB. At what distance is the intensity level 95?

Respuesta :

Answer:

The distance of the second sound intensity level is 28.12 m.

Explanation:

Given;

intensity of first sound level, I₁ = 110 dB

distance of first sound level, r₁ = 5 m

intensity of second sound level, I₂ = 95 dB

let the distance of second sound level =  r₂

The intensity of the sound in W/m² is given as;

[tex]dB = 10 Log[\frac{I}{I_o} ][/tex]

where;

I₀ is threshold of hearing = 1 x 10⁻¹² W/m²

for 110 dB to W/m²

[tex]110 = 10 Log[\frac{I}{1 \ \times \ 10^{-12}} ]\\\\11 = Log[\frac{I}{1 \ \times \ 10^{-12}} ]\\\\10^{11} = \frac{I}{1 \ \times \ 10^{-12}} \\\\I = 1 \ \times \ 10^{-12} \ \times \ 10^{11}\\\\I = 10^{-1} \ W/m^2\\\\I = 0.1 \ W/m^2[/tex]

for 95 dB to W/m²

[tex]95 = 10 Log[\frac{I}{1 \ \times \ 10^{-12}} ]\\\\9.5 = Log[\frac{I}{1 \ \times \ 10^{-12}} ]\\\\10^{9.5} = \frac{I}{1 \ \times \ 10^{-12}} \\\\I = 1 \ \times \ 10^{-12} \ \times \ 10^{9.5}\\\\I = 10^{-2.5} \ W/m^2\\\\[/tex]

The intensity of sound is related to distance as follows;

[tex]I = \frac{P}{A} = \frac{P}{\pi r^2} \\\\I = \frac{1}{r^2} \\\\I_1r_1^2 = I_2r_2^2 \\\\[/tex]

Now, determine the distance of the second sound intensity level

[tex]r_2 ^2 = \frac{I_1r_1^2}{I_2} \\\\r_2 = \sqrt{\frac{I_1r_1^2}{I_2} }\\\\r_2 = \sqrt{\frac{0.1 \ \times \ 5^2}{10^{-2.5}}}\\\\r_2 = 28.12 \ m[/tex]

Therefore, the distance of the second sound intensity level is 28.12 m.