Respuesta :

Answer:

[tex]Yes[/tex]

Step-by-step explanation:

[tex]We\ know\ that,\\For\ two\ equations\ of\ the\ form:\\\left \{ {a_1x+b_1y+c1=0} \atop {a_2x+b_2y+c2=0}} \right.\\to\ be\ parallel\ or\ have\ no\ solutions,\frac{a_1}{a_2}=\frac{b_1}{b_2} \neq \frac{c_1}{c_2}\\So,\\Let's\ identify\ the\ coefficients\ of\ the\ terms\ in\ each\ equation:\\a_1=-3, a_2=-3 \\b_1=1, b_2=1 \\c_1=1, c_2=4 \\Hence,\\Let's\ now\ check\ the\ ratio\ of\ the\ corresponding\ coefficients:\\\frac{a_1}{a_2}=\frac{-3}{-3}=1\\\frac{b_1}{b_2}=\frac{1}{1}=1\\[/tex]

[tex]\frac{c_1}{c_2}= \frac{1}{4} \\We\ hence,\ deduce\ that :\\\frac{a_1}{a_2}=\frac{b_1}{b_2}\neq \frac{c_1}{c_2}\\Hence,\\The\ two\ lines\ are\ parallel.[/tex]