An equation of the line tangent to y=x3+3x2+2 at its point of inflection is

A. y=−6x−6y is equal to negative 6 x minus 6

B. y=−3x+1y is equal to negative 3 x plus 1

C. y=2x+10y is equal to 2 x plus 10

D. y=3x−1

Respuesta :

Answer:

[tex]y = -3x +1[/tex]

Explanation:

Given

[tex]y = x^3 + 3x^2 + 2[/tex]

Required

Determine the equation at the point of inflection

The point of inflection of a curve is the point where the second derivative is 0.

So:

[tex]y = x^3 + 3x^2 + 2[/tex]

First derivative is:

[tex]y' = 3x^2 + 6x[/tex]

Second derivative:

[tex]y" = 6x + 6[/tex]

Equate to 0

[tex]6x + 6 = 0[/tex]

Solve for x

[tex]6x = -6[/tex]

[tex]x = -1[/tex]

Next, we calculate the slope (m) of the point using the first derivative.

Substitute -1 for x in [tex]y' = 3x^2 + 6x[/tex]

[tex]m = 3*-1^2 + 6 * -1[/tex]

[tex]m = 3*1 - 6[/tex]

[tex]m = 3 - 6[/tex]

[tex]m = -3[/tex]

To get the y equivalent;

Substitute [tex]x = -1[/tex] in [tex]y = x^3 + 3x^2 + 2[/tex]

[tex]y = (-1)^3 + 3(-1)^2 + 2[/tex]

[tex]y = -1 + 3+ 2[/tex]

[tex]y = 4[/tex]

Lastly, we calculate the line equation using:

[tex]y - y_1 =m(x- x_1)[/tex]

Where

[tex]x = -1[/tex] and [tex]y = 4[/tex]

[tex]m = -3[/tex]

So, we have:

[tex]y - 4 = -3(x -(-1))[/tex]

[tex]y - 4 = -3(x +1)[/tex]

[tex]y - 4 = -3x -3[/tex]

Make y the subject

[tex]y = -3x -3 +4[/tex]

[tex]y = -3x +1[/tex]

Hence, the equation is: [tex]y = -3x +1[/tex]