Transformation involves changing the position of a shape.
The transformation on rectangle ABCD to A'B'C'D' is (a) rotation of 270 degrees counterclockwise
The coordinates of ABCD are given as:
[tex]\mathbf{A = (-1,2)}[/tex]
[tex]\mathbf{B = (-1,5)}[/tex]
[tex]\mathbf{C = (-3,5)}[/tex]
[tex]\mathbf{D = (-3,2)}[/tex]
The coordinates of A'B'C'D' are given as:
[tex]\mathbf{A' = (2,1)}[/tex]
[tex]\mathbf{B' = (5,1)}[/tex]
[tex]\mathbf{C' = (5,3)}[/tex]
[tex]\mathbf{D' = (2,3)}[/tex]
The transformation from ABCD to A'B'C'D is 270 degrees counterclockwise about the origin.
And the proof is as follows.
The rule of 270 degrees counterclockwise about the origin is:
[tex]\mathbf{(x,y) \to (-y,x)}[/tex]
By testing the given coordinates, we have:
[tex]\mathbf{(2,1) \to (-1,2)}[/tex] --- A
[tex]\mathbf{(5,1) \to (-1,5)}[/tex] --- B
[tex]\mathbf{(5,3) \to (-3,5)}[/tex] --- C
[tex]\mathbf{(2,3) \to (-3,2)}[/tex] --- D
Hence, the true option is (a)
Read more about transformation at:
https://brainly.com/question/13801312