Answer:
[tex]\sqrt{420}=\sqrt{2\times2\times3\times5\times7} =2\sqrt{105}[/tex]
Step-by-step explanation:
We need to write prime factorisation to solve [tex]\sqrt{420}[/tex]
Prime factorisation: We need to find only those prime factors that are divisible
So, Prime factors of 420 are: 2x2x3x5x7
Now replacing 420 with its prime factors
[tex]\sqrt{420}\\=\sqrt{2\times2\times3\times5\times7} \\=\sqrt{2^2\times3\times5\times7} \\=\sqrt{2^2}\sqrt{3\times5\times7}\\=2 \sqrt{105}[/tex]
Since the options are incomplete, kindly verify the options.
So, [tex]\sqrt{420}=\sqrt{2\times2\times3\times5\times7} =2\sqrt{105}[/tex]