which calculation correctly uses prism factorization to write the square root of 420 in simplest form?
[tex] \sqrt{420} [/tex]
240 = V2 - 2 - 2 3.5 = 2/30
240 = 2 . 2 . 2 . 2 = 4/3
240 = 2 . 2 . 2 . 2 3.5 4/15
240 V2 · 2 · 2 · 3 3. 10 = 2/60

Respuesta :

Answer:

[tex]\sqrt{420}=\sqrt{2\times2\times3\times5\times7} =2\sqrt{105}[/tex]

Step-by-step explanation:

We need to write prime factorisation to solve [tex]\sqrt{420}[/tex]

Prime factorisation: We need to find only those prime factors that are divisible

So, Prime factors of 420 are: 2x2x3x5x7

Now replacing 420 with its prime factors

[tex]\sqrt{420}\\=\sqrt{2\times2\times3\times5\times7} \\=\sqrt{2^2\times3\times5\times7} \\=\sqrt{2^2}\sqrt{3\times5\times7}\\=2 \sqrt{105}[/tex]

Since the options are incomplete, kindly verify the options.

So, [tex]\sqrt{420}=\sqrt{2\times2\times3\times5\times7} =2\sqrt{105}[/tex]