Respuesta :

Answer:

The solution to the system of equations is:

[tex]x=5,\:y=3[/tex]

Step-by-step explanation:

Given the system of equations

[tex]\begin{bmatrix}x+2y=11\\ y=x-2\end{bmatrix}[/tex]

Arrange equation variables for elimination

[tex]\begin{bmatrix}x+2y=11\\ -x+y=-2\end{bmatrix}[/tex]

adding

[tex]-x+y=-2[/tex]

[tex]+[/tex]

[tex]\underline{x+2y=11}[/tex]

[tex]3y=9[/tex]

so

[tex]\begin{bmatrix}x+2y=11\\ 3y=9\end{bmatrix}[/tex]

solving for y

[tex]3y=9[/tex]

Divide both sides by 3

[tex]\frac{3y}{3}=\frac{9}{3}[/tex]

[tex]y=3[/tex]

[tex]\mathrm{For\:}x+2y=11\mathrm{\:plug\:in\:}y=3[/tex]

[tex]x+2\cdot \:3=11[/tex]

[tex]x+6=11[/tex]

[tex]x=5[/tex]

Thus, the solution to the system of equations is:

[tex]x=5,\:y=3[/tex]