Answer:
The expanded form of the expression [tex]-\frac{1}{2}(y-x)[/tex] is [tex]\mathbf{-\frac{1}{2}(y)+\frac{1}{2}(x)}[/tex]
Step-by-step explanation:
We need to write expanded form of the expression [tex]-\frac{1}{2}(y-x)[/tex]
For expansion we will use distributive property of multiplication over addition
[tex]a(b+c)=ab+ac[/tex]
Applying above rule:
[tex]-\frac{1}{2}(y-x)\\=-\frac{1}{2}(y)-(-\frac{1}{2}(x))\\=-\frac{1}{2}(y)+\frac{1}{2}(x)[/tex]
So, the expanded form of the expression [tex]-\frac{1}{2}(y-x)[/tex] is [tex]\mathbf{-\frac{1}{2}(y)+\frac{1}{2}(x)}[/tex]