Respuesta :

Answer:

The expanded form of the expression [tex]-\frac{1}{2}(y-x)[/tex] is [tex]\mathbf{-\frac{1}{2}(y)+\frac{1}{2}(x)}[/tex]

Step-by-step explanation:

We need to write expanded form of the expression [tex]-\frac{1}{2}(y-x)[/tex]

For expansion we will use distributive property of multiplication over addition

[tex]a(b+c)=ab+ac[/tex]

Applying above rule:

[tex]-\frac{1}{2}(y-x)\\=-\frac{1}{2}(y)-(-\frac{1}{2}(x))\\=-\frac{1}{2}(y)+\frac{1}{2}(x)[/tex]

So, the expanded form of the expression [tex]-\frac{1}{2}(y-x)[/tex] is [tex]\mathbf{-\frac{1}{2}(y)+\frac{1}{2}(x)}[/tex]