Respuesta :

Answer:

x = 7

y = 4

Step-by-step explanation:

3x - 5 = 5y - 4 (sides of an equilateral ∆)

3x - 5y = 5 - 4

3x - 5y = 1 ----› Eqn. 1

3x - 5 = y + 12 (sides of an isosceles ∆)

3x - y = 5 + 12

3x - y = 17 ---› Eqn. 2.

Subtract eqn 2 from eqn 1.

3x - 5y = 1 ----› Eqn. 1

3x - y = 17 ---› Eqn. 2.

-4y = -16

Divide both sides by -4

y = 4

Substitute y = 4 into eqn. 2

3x - y = 17 ---› Eqn. 2.

3x - 4 = 17

3x = 17 + 4

3x = 21

Divide both sides by 3

x = 7

Following are the calculation to the x and y value:

 Given:

[tex]3x - 5 \\\\5y - 4\\\\y + 12\\\\[/tex]

To find:

x,y=?

Solution:

[tex]\to 3x - 5 = 5y - 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \text{(sides of an equilateral} \Delta)\\\\\to 3x - 5y = 5 - 4 \\\\\to 3x - 5y = 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (a) \\\\\to 3x - 5 = y + 12 \ \ \ \ \ \ \ \ \ \ \ \ \ \text{(sides of an isosceles} \Delta )\\\\\to 3x - y = 5 + 12\\\\\to 3x - y = 17 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (b)\\\\[/tex]

Subtracting the equation (b) from the equation (a):

[tex]3x - 5y = 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (a)\\\\3x - y = 17 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (b)\\\\-4y = -16 \\\\4y=16\\\\y=\frac{16}{4}\\\\y=4\\\\[/tex]

Putting the value of y into the equation (b):

[tex]3x-(4)=17\\\\3x-4=17\\\\3x=17+4\\\\3x=21\\\\x=\frac{21}{3}\\\\x=7[/tex]

Therefore, the final answer is "7 and 4".

Learn more:

brainly.com/question/11444405