Find the values of x and y.
3x - 5
5y - 4
y + 12
X =
y=

Answer:
x = 7
y = 4
Step-by-step explanation:
3x - 5 = 5y - 4 (sides of an equilateral ∆)
3x - 5y = 5 - 4
3x - 5y = 1 ----› Eqn. 1
3x - 5 = y + 12 (sides of an isosceles ∆)
3x - y = 5 + 12
3x - y = 17 ---› Eqn. 2.
Subtract eqn 2 from eqn 1.
3x - 5y = 1 ----› Eqn. 1
3x - y = 17 ---› Eqn. 2.
-4y = -16
Divide both sides by -4
y = 4
Substitute y = 4 into eqn. 2
3x - y = 17 ---› Eqn. 2.
3x - 4 = 17
3x = 17 + 4
3x = 21
Divide both sides by 3
x = 7
Following are the calculation to the x and y value:
Given:
[tex]3x - 5 \\\\5y - 4\\\\y + 12\\\\[/tex]
To find:
x,y=?
Solution:
[tex]\to 3x - 5 = 5y - 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \text{(sides of an equilateral} \Delta)\\\\\to 3x - 5y = 5 - 4 \\\\\to 3x - 5y = 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (a) \\\\\to 3x - 5 = y + 12 \ \ \ \ \ \ \ \ \ \ \ \ \ \text{(sides of an isosceles} \Delta )\\\\\to 3x - y = 5 + 12\\\\\to 3x - y = 17 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (b)\\\\[/tex]
Subtracting the equation (b) from the equation (a):
[tex]3x - 5y = 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (a)\\\\3x - y = 17 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (b)\\\\-4y = -16 \\\\4y=16\\\\y=\frac{16}{4}\\\\y=4\\\\[/tex]
Putting the value of y into the equation (b):
[tex]3x-(4)=17\\\\3x-4=17\\\\3x=17+4\\\\3x=21\\\\x=\frac{21}{3}\\\\x=7[/tex]
Therefore, the final answer is "7 and 4".
Learn more:
brainly.com/question/11444405