Circle Y is shown. Chords R T and S U intersect. Arc R S is 106 degrees. The angle that intercepts arc R S is 94 degrees.

In circle Y, what is mArc T U?

82°
100°
106°
118°

Respuesta :

Given:

Consider the below figure attached with this question.

In Circle Y, Chords R T and S U intersect.

Arc RS is 106 degrees.

The angle that intercepts arc RS is 94 degrees.

To find:

The measure of arc(TU).

Solution:

If two chords intersect each other insider the circle, then the half of sum of intercepted arcs is equal to the angle on intersection of those arcs.

For the given problem,

[tex]\dfrac{1}{2}[m(arc RS)+m(arc TU)]=94^\circ[/tex]

[tex]\dfrac{1}{2}[106^\circ+m(arc TU)]=94^\circ[/tex]

[tex]106^\circ+m(arc TU)=2\times 94^\circ[/tex]

[tex]106^\circ+m(arc TU)=188^\circ[/tex]

[tex]m(arc TU)=188^\circ-106^\circ[/tex]

[tex]m(arc TU)=82^\circ[/tex]

The measure of arc(TU) is 82 degrees.

Therefore, the correct option is A.

Ver imagen erinna

Answer:

b. 82˚

Step-by-step explanation:

Ver imagen theweirdoasian123