Respuesta :

Answer:

[tex]x>\frac{83}{15}[/tex]

Step-by-step explanation:

STEP 1: Simplify [tex]\frac{x-5}{2} +\frac{2}{5}>\frac{2}{3}[/tex]

[tex]\frac{5x-21}{10}>\frac{2}{3}[/tex]

STEP 2: Multiply both sides of the equation by [tex]10[/tex].

[tex]\frac{5x-21}{10}>\frac{2}{3}*(10)[/tex]

STEP 3: Remove parentheses.

[tex]\frac{5x-21}{10}>\frac{2}{3}*(10)[/tex]

STEP 4: Multiply [tex]\frac{2}{3}*(10)[/tex]

[tex]\frac{5x-21}{10}>\frac{20}{3}[/tex]

STEP 5: Move all terms not containing [tex]x[/tex] to the right side of the inequality.

[tex]5x>\frac{83}{3}[/tex]

STEP 6: Divide each term by [tex]5[/tex] and simplify.

[tex]x>\frac{83}{15}[/tex]

STEP 7: The result can be shown in multiple forms.

Inequality Form:

[tex]x>\frac{83}{15}[/tex]

Interval Notation:

[tex](\frac{83}{15}[/tex],∞[tex])[/tex]

Answer:

x > [tex]\frac{83}{15}[/tex]

Step-by-step explanation:

Given

[tex]\frac{x-5}{2}[/tex] + [tex]\frac{2}{5}[/tex] > [tex]\frac{2}{3}[/tex]

Multiply through by 30 ( the LCM of 2, 5 and 3 ) to clear the fractions

15(x - 5) + 12 > 20 ← distribute and simplify left side

15x - 75 + 12 > 20

15x - 63 > 20 ( add 63 to both sides )

15x > 83 ( divide both sides by 15 )

x > [tex]\frac{83}{15}[/tex]