What is the new position of the drone relative to the top of the building?

Answer:
The new position of the drone relative to the top of the building would be:
Hence, option (B) is correct.
Step-by-step explanation:
Given that a drone flies up [tex]75\frac{3}{4}[/tex] ft above the top floor of a building.
As it flies away from the building and goes down [tex]117\frac{7}{8}[/tex].
Thus, the new position becomes
[tex]75\frac{3}{4}-117\frac{7}{8}[/tex]
[tex]=\frac{303}{4}-117\frac{7}{8}[/tex]
[tex]=\frac{303}{4}-\frac{943}{8}[/tex]
The LCM of 4,8: 8
Adjusting fractions based on LCM
[tex]=\frac{606}{8}-\frac{943}{8}[/tex]
[tex]\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}[/tex]
[tex]=\frac{606-943}{8}[/tex]
[tex]=-\frac{337}{8}[/tex]
Converting improper fractions to mixed numbers
[tex]=-42\frac{1}{8}[/tex]
THEN IT RISES ANOTHER [tex]29\frac{1}{2}\:\:[/tex] and HOVERS onwards:
As the drone rises again another [tex]29\frac{1}{2}\:\:[/tex] ft, the final position can be calculated by adding [tex]29\frac{1}{2}\:\:[/tex] ft in [tex]-42\frac{1}{8}[/tex] ft.
i.e
[tex]-42\frac{1}{8}+29\frac{1}{2}[/tex]
[tex]=-\frac{337}{8}+29\frac{1}{2}[/tex]
[tex]=-\frac{337}{8}+\frac{59}{2}[/tex]
The LCM of 8, 2: 8
Adjusting fractions based on LCM
[tex]=-\frac{337}{8}+\frac{236}{8}[/tex]
[tex]\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}[/tex]
[tex]=\frac{-337+236}{8}[/tex]
[tex]=-\frac{101}{8}[/tex]
Converting improper fractions to mixed numbers
[tex]=-12\frac{5}{8}[/tex]
Therefore, the new position of the drone relative to the top of the building would be:
Hence, option (B) is correct.