Respuesta :

Answer:

The new position of the drone relative to the top of the building would be:

  • [tex]-12\frac{5}{8}[/tex]

Hence, option (B) is correct.

Step-by-step explanation:

Given that a drone flies up [tex]75\frac{3}{4}[/tex] ft above the top floor of a building.

As it flies away from the building and goes down [tex]117\frac{7}{8}[/tex].

Thus, the new position becomes

[tex]75\frac{3}{4}-117\frac{7}{8}[/tex]

[tex]=\frac{303}{4}-117\frac{7}{8}[/tex]

[tex]=\frac{303}{4}-\frac{943}{8}[/tex]

The LCM of 4,8: 8

Adjusting fractions based on LCM

[tex]=\frac{606}{8}-\frac{943}{8}[/tex]

[tex]\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}[/tex]

[tex]=\frac{606-943}{8}[/tex]

[tex]=-\frac{337}{8}[/tex]

Converting improper fractions to mixed numbers

[tex]=-42\frac{1}{8}[/tex]

THEN IT RISES ANOTHER [tex]29\frac{1}{2}\:\:[/tex] and HOVERS onwards:

As the drone rises again another [tex]29\frac{1}{2}\:\:[/tex] ft, the final position can be calculated by adding [tex]29\frac{1}{2}\:\:[/tex] ft in [tex]-42\frac{1}{8}[/tex] ft.

i.e

[tex]-42\frac{1}{8}+29\frac{1}{2}[/tex]

[tex]=-\frac{337}{8}+29\frac{1}{2}[/tex]

[tex]=-\frac{337}{8}+\frac{59}{2}[/tex]

The LCM of 8, 2: 8

Adjusting fractions based on LCM

[tex]=-\frac{337}{8}+\frac{236}{8}[/tex]

[tex]\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}[/tex]

[tex]=\frac{-337+236}{8}[/tex]

[tex]=-\frac{101}{8}[/tex]

Converting improper fractions to mixed numbers

[tex]=-12\frac{5}{8}[/tex]

Therefore, the new position of the drone relative to the top of the building would be:

  • [tex]-12\frac{5}{8}[/tex]

Hence, option (B) is correct.

Otras preguntas