Answer:
[tex]\boxed {\boxed {\sf 9 \ arrangements }}[/tex]
Step-by-step explanation:
Let's set up a proportion using the following setup:
[tex]\frac{arrangements}{minutes} =\frac{arrangements}{minutes}[/tex]
We know that the florist can arrange 4 in 92 minutes.
[tex]\frac{4 \ arrangements}{92 \ minutes} = \frac{arrangements}{minutes}[/tex]
We don't know how many the florist can arrange in 207 minutes, so we say x arrangements can be completed in 207 minutes.
[tex]\frac{4 \ arrangements}{92 \ minutes} = \frac{ x \ arrangements}{ 207 \ minutes}[/tex]
[tex]\frac{4}{92} =\frac{x}{207}[/tex]
Solve for x by isolating it on one side of the proportion.
x is being divided by 207. The inverse of division is multiplication. Multiply both sides of the proportion by 207.
[tex]207*\frac{4}{92}=\frac{x}{207}*207[/tex]
[tex]207*\frac{4}{92}=x[/tex]
[tex]207*0.0434782609=x[/tex]
[tex]9=x[/tex]
The florist can arrange 9 arrangements in 207 minutes.