What is the Cp (in J/gC) of a material if a 50 gram sample of it at 100 C is placed into 500 grams of water at
20 C and the water temp rises to 23 C and the material temp goes down to 23 C?

Respuesta :

Answer:

The specific heat capacity of this material is approximately [tex]1.6\; \rm J\cdot g^{-1} \cdot {\left(^\circ C\right)}^{-1}[/tex].

(Assume that there is no energy loss. Assume that the specific heat capacity of water is [tex]4.182\; \rm J \cdot g^{-1} \cdot {\left(^\circ C\right)}^{-1}[/tex].)

Explanation:

Let [tex]c[/tex] denote the specific heat capacity of a material. Consider a sample of that material with mass [tex]m[/tex]. If the temperature of that objects changes by [tex]\Delta T[/tex], the corresponding energy change would be [tex]Q =c \cdot m \cdot \Delta T[/tex].

Start by finding the amount of energy that water has gained from the [tex]50\; \rm g[/tex] sample.

  • Specific heat capacity of water: [tex]c(\text{water}) \approx 4.182\; \rm J \cdot g^{-1} \cdot \left(^\circ C\right)^{-1}[/tex].
  • Mass of water: [tex]m(\text{water}) = 500\; \rm g[/tex].
  • Temperature change: [tex]\begin{aligned}\Delta T(\text{water}) &= T(\text{final}) - T(\text{initial}) \\ &= 23\; \rm ^\circ C - 20\; \rm ^\circ C = 3\; \rm ^\circ C\end{aligned}[/tex].

That [tex]500\; \rm g[/tex] of water would have gained:

[tex]\begin{aligned} & Q(\text{water}) \\ &= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T (\text{water}) \\ &\approx 4.182\; \rm J \cdot g^{-1} \cdot \left(^\circ C\right)^{-1} \times 500\; \rm g \times 3\; \rm ^\circ C \\ &\approx 6.27\times 10^{3}\; \rm J \end{aligned}[/tex].

Assume that the [tex]50\; \rm g[/tex] sample and the [tex]500\; \rm g[/tex] of water were insulated from the surroundings. The energy that water gained would be exactly the same as the energy that the [tex]50\; \rm g\![/tex] sample had released through cooling.

In other words, the [tex]50\; \rm g[/tex] sample has released approximately [tex]6.27 \times 10^{3}\; \rm J[/tex] of energy as it is cooled from [tex]100\; \rm ^\circ C[/tex] to [tex]23\; \rm ^\circ C[/tex].

  • Energy change: [tex]Q(\text{sample}) \approx -6.27 \times 10^{3}\; \rm J[/tex] (negative because this sample has lost energy through cooling.)
  • Mass of sample: [tex]m = 50\; \rm g[/tex].
  • Temperature change: [tex]\begin{aligned}\Delta T(\text{sample}) &= T(\text{final}) - T(\text{initial}) \\ &= 23\; \rm ^\circ C - 100\; \rm ^\circ C = -77\; \rm ^\circ C\end{aligned}[/tex].

Rearrange the equation [tex]Q = c \cdot m \cdot \Delta T[/tex] to find an expression for specific heat capacity, [tex]c[/tex]:

[tex]\begin{aligned}c = \frac{Q}{m \cdot \Delta T}\end{aligned}[/tex].

Apply this expression to find the specific heat capacity of the sample:

[tex]\begin{aligned}c(\text{sample}) &= \frac{Q(\text{sample})}{m(\text{sample}) \cdot \Delta T(\text{sample})} \\ &\approx \frac{-6.27\times 10^{3}\; \rm J}{50\; \rm g \times \left(-77\; \rm ^\circ C\right)} \approx 1.6\; \rm J \cdot g^{-1} \cdot {\left(^\circ C\right)}^{-1}\end{aligned}[/tex].